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Abstract 

Extension of the NN emulation framework for superparameterization (SP) has been developed.  

The current PNNL-MMF has been used to provide the training set for a NN emulator. The large 

scale fields from the MMF that provide the SP inputs are used as the NN input vector and the 

aggregated results of the SP are used as the output vector. The limited training dataset was drawn 

selectively from four days of MMF global simulations, spanning diurnal and latitudinal 

variability. Experiments with different NN architectures have been performed and assessed.  

These experiments include comparisons of a single emulating NN with many outputs vs. a 

battery of simpler emulating NNs with different outputs.  Also experiments with different output 

normalizations and different emulating NN complexities have been conducted. Training an 

ensemble of emulating NNs or developing NN-SP has been performed.  Performance (accuracy 

and speedup) of the NN-SP has been estimated on an independent simulated dataset.  Multiple 

statistics have been calculated for NN-SP and the differences between SP and NN-SP.  The 

results obtained in this work can be summarized as follows: (1) The SP can be emulated by NN 

with a satisfactory accuracy (based on validation on an independent data set). (2) The NN-SP 

provides an impressive, two orders of magnitude, speedup as compared with the original SP. It 

provides a practical opportunity to use NN-MMF for decadal and longer climate simulations. 

  



2 

 

1. Introduction 

Tremendous developments in numerical modeling and computing capabilities during the last 

decades have contributed dramatically to scientific and practical significance of climate, climate 

change, and weather prediction.  One of the main problems of development and implementation 

of state-of-the-art models is the complexity of physical processes involved, especially at cloud 

scales.  Parameterizations of model physics are approximate schemes, adjusted to model 

resolution and computer resources, based on simplified 1-D physical process equations and 

empirical and observational data.  Still, calculations of model physics in a typical moderate 

resolution GCM (General Circulation Model) like the NCAR (National Center for Atmospheric 

Research) CAM-3 (Community Atmospheric Model) T42 (~3 degree) with 26 vertical levels, 

take about 70% of the total model computations.   

A new approach to the treatment of model physics introduces cloud-scale processes into climate 

models by using Cloud-Resolving Models (CRM) nested into a conventional climate model 

(Grabowski 2001, 2002, 2003a,b, 2004, Randall et al. 2003, Khairutdinov and Randall 2001, 

2003). This approach, originally labeled as a “superparameterization” (SP), but later as the 

Multi-scale Modeling Framework (MMF), is attracting a growing interest in the climate 

modeling community because it couples cloud-scale and large-scale dynamics within a single 

modeling framework. However, this approach imposes considerably more severe computational 

requirements because its inclusion increases the model run time by a factor of 200 to 250, which 

severely limits its applicability. To address this problem we propose to develop accurate and 

very fast neural network emulations of SP. 
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During the last decade, statistical or machine learning and specifically neural network (NN) 

techniques have found a variety of applications in different fields, including atmospheric and 

oceanic modeling (Krasnopolsky, 2007, 2013). The hybrid modeling approach has been 

introduced that is a synergetic combination of statistical (NN) and deterministic modeling. This 

approach uses NN for accurate and fast emulation or approximation of components of GCM 

model physics.  Due to the capability of modern NN techniques to provide very high accuracy 

for approximation of complex multidimensional mappings like model physics, these NN 

emulations are practically identical to the original physical parameterizations themselves. In 

addition, they are orders of magnitude faster (Krasnopolsky et al. 2002, 2008, 2010).  

Thus, NN emulations can preserve the integrity, accuracy, and, therefore, the level of 

sophistication of the state-of-the-art parameterizations of physical atmospheric processes.  This 

result is achieved by using an atmospheric model run with the original parameterization to 

simulate training data for developing NNs. The model-simulated fields allow us to achieve the 

unprecedented accuracy for approximation because simulated data are free or almost free of the 

problems typical for empirical data (problems like high level of observational noise, sparse 

spatial and temporal coverage, poor representation of extreme events, etc.).  In the context of our 

approach, the accuracy and speed-up of NN emulations is always measured against the original 

parameterization.  

Here a feasibility or proof of concept study is presented for a novel application of the NN 

approach aimed at improving the overall performance of the MMF. Application of the NN 

approach has the capability of increasing the speed of calculations of the MMF to such a degree 

that would make it comparable with the speed of conventional climate models.  This would, in 

turn, make the MMF more usable for climate studies and research on MMF improvements.  
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The central question of this paper is whether and how the SP (i.e., CRM embedded in the MMF) 

can be accurately approximated by a NN emulator. Following our previous work, we use an 

existing SP run inside the MMF for producing SP inputs and outputs needed for creating a NN 

training set. These simulated data come from a version of the MMF that treats multi-scale 

aerosol-cloud interactions, developed at Pacific Northwest National Laboratory (PNNL-MMF) 

(Wang et al., 2011).  This version consists of a 2D CRM running inside each grid column of 

NCAR Community Atmosphere Model version 5 (NCAR CAM5) at 1.9 × 2.5 degree horizontal 

resolution, forced by climatological sea surface temperature (SST) values. The simulated data set 

of SP inputs and outputs is used to train the NN emulation of SP and to evaluate the NN 

emulation.  

Before proceeding to descriptions of research background and methodology, three important 

issues should be briefly outlined.  First, our NN technique is designed to produce NN emulations 

that are an accurate approximation of the fundamental physics implemented in the SP.  By this 

we mean that the RMS errors or deviations of the quantities produced by the NN emulations 

from the same quantities produced by the existing SP are small and not growing in time. The 

RMS differences, for example, should be less than the magnitudes of typical observational 

errors. At the same time, the obtained biases have to be negligible. This means that the 

developed NN emulations have practically zero systematic errors and small RMS errors include 

only random errors. The research related to the use of the Monte Carlo Independent Pixel 

Approximation (Pincus et al. 2003) has shown that a climate model performance is insensitive to 

such errors in parameterizations.  In some cases discussed below, closeness of statistical metrics 

of the data like mean value, variance, probability density function may be more 

important/indicative than small RMSE.   
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 Secondly, in this work a NN emulation of the embedded SP is developed.  This means that our 

NN emulation is, at best, only as good as the SP.  It is our goal to make the NN emulation very 

close to the actual SP in terms of physical output, but computationally much faster. The NN 

emulation then replaces the SP in the MMF to enable longer model runs at much smaller 

computational cost and ensemble climate simulations, which may be computationally prohibited 

with MMF otherwise.  Evidently, it does not, however, replace the SP in runs used to simulate 

training data. 

The third point follows directly form the second. In this feasibility study only the existing SP is 

approximated using NN emulations.  If this approach is shown to be feasible, improvements of 

the existing SP can be considered, including increasing the horizontal and vertical resolution and 

even introducing SP based on 3D CRM, which if emulated with NN becomes computationally 

affordable.    

In Section 2 the background of MMF and that of the NN approach are introduced. In Section 3 

SP inputs and outputs are identified.  The simulated data used in this study are described in 

Section 4.  In Section 5 details of the NN development are presented.  In Section 6 the results of 

validation of NN emulation of SP (NN-SP) on independent data set, and an estimate of the 

speedup due to using NN emulation are presented.  Conclusions are presented in Section 7.     
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2. Background 

2.1    The PNNL Multi-scale Modeling Framework (MMF) 

The PNNL-MMF has been described in detail in Wang et al. (2011), and is an extension of the 

Colorado State University (CSU) MMF model (Khairoutdinov and Randall, 2001). The MMF 

consists of a global climate model with a 2D cloud resolving model nested into each GCM grid 

square. The conventional cloud parameterizations are all removed from the model and the 

radiation code interacts directly with the CRM output. The MMF is not just a convection 

parameterization. MMF is also a turbulent boundary layer parameterization.  The current host 

model uses the NCAR CAM5 model at 1.9 × 2.5 degree horizontal resolution and 30 vertical 

levels. The time step of the outer grid is 10 minutes. The host model has 13,824 grid cells, each 

of which contains a 2D CRM, which is nominally oriented north-south. The CRM uses non-

hydrostatic, anelastic equations and a bulk condensed water formulation for cloud water, cloud 

ice, rain, snow and graupel.  In the PNNL-MMF, the embedded CRM includes 64 columns with 

4 km grid-spacing and 28 vertical layers coinciding with the lowest 28 CAM5 levels. The time 

step for the embedded CRM is 20 s. The CRM uses periodic boundary conditions. No 

information passes from one CRM to the next directly, but only through the mean flow of the 

large gird.  

The CRM is called at each CAM time step. Each CRM retains its computed fields from the last 

time step as the initial fields for the current time step. The CRM equations are integrated 

continuously for the CAM time step and are forced by the large-scale tendencies computed as 

follows:  
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where Φ is any CRM prognostic variable except precipitating water, ΦLS is the corresponding 

variable computed by CAM as a result of all the large-scale processes after the MMF call at the 

previous CAM time step, Φn is the horizontally averaged CRM variable at the end of the CRM 

call at the previous CAM time step ΔtLS.  This large-scale forcing represents the relaxation of the 

CRM horizontal averages to the provisional CAM fields.  The intent of this forcing term is to 

prevent a systematic drift of the CRM fields away from the corresponding large scale fields.  The 

CRM, in turn, returns the large-scale tendencies due to the cloud-scale processes computed as 

follows:   
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where Φn+1 is the horizontal mean of the CRM fields at the end of the CRM call.  In the absence 

of cloud processes or convection resolved by the CRM domain, Φn+1 will be identical to ΦLS at 

the end of the MMF call, producing zero tendencies due to subgrid processes. As with the CSU 

simulations in 2D, no feedback occurs from the CRM to the large-scale wind because of 

concerns with the 2D momentum transfer.  

Radiative transfer is computed interactively within the CRM domain and independently for each 

grid column, assuming 0-or-1 cloud fraction for each grid cell. The radiative transfer is computed 

every 10 minutes using the time averaged CRM fields. Previous research has demonstrated that 

cloud-scale interactions with the radiation are important for determining cloud evolution, the 

large-scale distribution of clouds, and cloud optical processes.  
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The PNNL-MMF is driven by the climatological sea surface temperature (SST). At the 

beginning of the simulation, the CRM columns were initialized with the CAM grid values and 

evolve continuously thereafter.  Computational run time for the MMF is approximately 150 

times slower than the parent CAM5  

Changes to the current CRM configuration within the MMF are limited largely by computational 

overhead. In its 2D configuration at 4 km horizontal resolution, the model does a good job of 

capturing deep convection; hence, its improvements are demonstrated in simulations of the 

tropical Pacific climatology (Ovtchinnikov et al., 2005). However, the 4 km horizontal resolution 

is insufficient to resolve boundary layer clouds adequately. The ability of the CRM to simulate 

upper tropospheric cirrus is mixed, with some success in the case of more organized systems, but 

less so in the case of detached cirrus.  

2.2    NN emulations of model physics 

An ordinary model physics parameterization introduces into a model, in a parameterized form, 

an influence of subgrid scale processes, which the model does not resolve explicitly.  It is a 

collection of equations and/or statistical relationships that, at each integration time step, take 

from the model a set of model variables, which constitute an input vector, X, and return to the 

model a set of variables, which constitute an output vector, Y.  Usually the parameterization has 

no internal memory, that is, it does not use any information from the previous time steps to 

calculate the output vector Y.  The vector Y provides the physical feedback or forcing used in the 

model to update model variables at the current integration step.  Such a deterministic 
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parameterization for a particular input vector X generates a unique output vector Y.  Radiation or 

convection parameterization can be considered as examples of such parameterizations.    

The NN technique developed in our previous works (Krasnopolsky et al. 2002, 2008, and 2010) 

for emulating such deterministic parameterizations of model physics is based on two basic facts:  

1. any deterministic parameterization of model physics can be considered as a single valued 

(unique output vector is produced for a particular input vector) continuous or almost 

continuous (like a step function) mapping (output vector, Y, vs. input vector, X, 

relationship),  

Y = P(X)                                                                         (3) 

2. NN (the multilayer perceptron in our case), which is a generic deterministic mapping, is a 

generic tool for approximation of such mappings.  The deterministic mapping (3) can be 

emulated by a single NN (Chen and Chen 1995, Ripley 1996, Attali and Pagès 1997, 

Cherkassky and Mulier 1998). 

The multilayer perceptron NN is an analytical approximation that uses a family of functions like: 

      (4) 

 

where xi and yq are components of the input and output vectors respectively, a and b are fitting 

parameters, and ϕ is a so called activation function (usually it is a hyperbolic tangent), n and m 

are the numbers of inputs and outputs respectively, and k is the number of neurons in the hidden 

layer. 
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During last several decades the NN emulation technique has found the variety of applications in 

different fields (Krasnopolsky 2007, 2013) and, more specifically, for accurate and fast 

emulating atmospheric radiative processes and radiation parameterizations in GCMs 

(Krasnopolsky et al. 2008, 2010).  

Based on our experience with NN emulations of deterministic parameterizations, a high accuracy 

for NN emulations can be obtained, with practically zero biases and small random errors. This is 

a necessary condition for successful integration of the NN emulations into a model, with 

preservation of the integrity/quality of the model physics and avoiding accumulating errors 

during long-term climate simulations with developed NN emulations. The choice of an optimal 

NN emulation is based on its accuracy not its speed-up that will be very significant, anyway.  

2.3  Extension of the NN emulation developmental framework/methodology 

for SP 

2.3.1    Approach 

In this study, our goals are to:  

1. further extend the NN emulation methodology to emulate SP, 

2. develop a NN emulation of SP to significantly improve the model computational 

performance, test the approximation accuracy of the developed emulation on an 

independent test data set  

Our approach takes advantage of the facts that: 

1. in each column of the GCM at each time step the SP or the embedded CRM receives a 

vector of input parameters X, which describes a state of the atmosphere in this column in 
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terms/variables of the GCM (ΦLS  in eqs. (1)) and serves as a forcing for the embedded 

CRM; 

2. after integration of the CRM in the column of the GCM, the SP returns back to the GCM 

a vector of output parameters Y, which describes the physical forcing for this column in 

terms/variables of the GCM (see eq. (2)).   

Thus, the entire SP, from a mathematical point of view, can be considered as a mapping similar 

to (3).  Taking into account the physical and mathematical properties of the CRM, this mapping 

is continuous or almost continuous (may contain finite discontinuities like step functions).  

However, there is a significant difference between a deterministic (e.g., radiation) 

parameterization, which can be adequately represented by the mapping (3), and the SP.  This 

difference, which requires us to modify a mapping representing SP and our NN emulation 

technique, is discussed in the next section.   

2.3.2    Memory/history dependence aspects of SP 

In the case of SP, at each time step, the output of the mapping, representing SP, Y, depends not 

only on the SP input vector X, but also on an internal hidden (from GCM) variable set, which is 

the state of the CRM, ξ at the previous timestep.  One can imagine the same GCM forcing X 

producing different results Y based on a different internal state of the CRM, ξ, which is not 

known to GCM and therefore to NN, which we are going to use for emulating SP.  Actually, the 

SP, for the same X, may return to GCM various Ys, depending on different scenarios of subgrid 

processes, which are determined by the CRM conditions ξS.  The CRM internal state is the result 

of CRM integration at the previous time step, which is remembered in SP.  Thus, when 

considered as a mapping, SP demonstrates an uncertainty of the output vector Y at a particular 

value of the input vector X, due to the variability of hidden internal CRM initial conditions.  This 
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uncertainty has a physical meaning; variability or uncertainty of Y for the same X represents in 

GCM the subgrid variability, i.e. effects of subgrid processes.  Thus, this memory/history 

dependency needs to be taken into account and the mapping (3) has to be modified for SP.   

We can introduce formally/mathematically the history or memory dependence modifying for SP 

the mapping (3) as,  

Y = SP(X, ξ),                                                                   (5)  

where ξ is the vector of the initial state of the CRM.   Let us stress again that ξ is a hidden 

variable not known to the GCM. It is an internal SP variable, which is not available outside of 

SP, in the GCM, and therefore it is not available for the NN emulating SP.  Thus, the mapping 

(5), unlike mapping (3), is not a deterministic (single valued) mapping; it is a multivalued 

mapping, and the NN emulation approach developed for mapping (3) should be modified in this 

case. 

Because ξ is not available in the GCM, it can be considered as a stochastic variable determined 

by processes that are not recognizable at GCM scales.  Thus, mapping (5) can be considered as a 

stochastic mapping that is a family of mappings (or a multivalued mapping).  The probability 

distribution of the members of the family is determined by X and ξ.  A NN technique for 

emulating stochastic mappings has been developed in Krasnopolsky et al. (2011) and 

Krasnopolsky and Lin (2012) and was applied to emulate convection parameterization derived 

from data simulated by CRM (Krasnopolsky et al. 2011) and to evaluate a NN multi-model 

ensemble (Krasnopolsky and Lin 2012).  The generic and flexible NN technique provides the 

necessary tools for emulating such mappings.  An ensemble of NNs was introduced to emulate a 

stochastic mapping.   There are many different methods that can be used to generate an ensemble 
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of NNs (e.g., see Krasnopolsky 2013).  The most common approach is to train a set of NNs using 

different initializations for their weights.  In this case, different members of the NN ensemble 

correspond to different local minima of the error function, which is minimized during the NN 

training.    

Thus, the stochastic mapping (5), which actually is a family of mappings, is emulated by an 

ensemble (a family) of NNs: 

Yi = Neti(X) = Net(X,Wi),     i = 1, …, M                                                (6)  

where each Neti is represented by eq. (3), Wi is a set of a and b in eq. (3) corresponding to the 

local minimum number i of the error function, and M (see Section 5.2) is the number of the 

ensemble members.  The ensemble (6) constitutes NN emulation for SP (5).  An alternative 

approach to build NN emulation for SP exists and is briefly discussed in Section 7; however, in 

this study we use the NN ensemble (6) to emulate SP in MMF. 
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3. SP Inputs and Outputs 

The definition of what are constituents of vectors X and Y is an essential part of the conceptual 

design of a NN emulation. While we have a current working understanding of these vector’s 

components, this understanding will may have to be refined and re-determined experimentally in 

the process of the development.  

The SP inputs are listed in Table 1 and SP outputs – in Table 2.  Vertical dimensionalities of 

variables are shown for these SP inputs and outputs in Tables 1 and 2 and in the following tables 

because it is this dimensionality that determines the dimensionalities of the mapping (5) and 

eventually the size of the emulating NN (number of NN inputs and outputs).    

Table 1  SP Inputs and Their Vertical Dimensionality  

Input 

# 
Physical Name Variable 

Vertical Dimensionality 

in GCM 

1 Temperature T3D 30 

2 Water vapor Q3D 30 

3 Liquid cloud water QC3D 30 

4 Ice cloud water QI3D 30 

5 
Horizontal U component of the velocity 

vector 
U3D 30 

6 
Horizontal V component of the velocity 

vector 
V3D 30 

7 Vertical pressure velocity OMEGA3D 30 

8 Pressure depth PDEL3D 30 

9 Pressure at the middle of a model layer PMID3D 30 

10 
Grid height at the middle of a model 

layer 
ZMID3D 30 

11 Grid height at model interface ZINT3D 31 

12 Radiative heating rate RAD3D 30 

13 
Aerosol number concentrations (for 3 

models) 
num_a1_NUM 30 

14 
 

num_a2_NUM 30 

15 
 

num_a3_NUM 30 

16 Aerosol volume concentrations num_a1_VOL 30 

17 
 

num_a2_VOL 30 
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18 
 

num_a3_VOL 30 

19 Aerosol Hygroscopicity num_a1_HYG 30 

20 
 

num_a2_HYG 30 

21 
 

num_a3_HYG 30 

22 Surface pressure PS2D 1 

23 Large-scale surface stress TAU2D 1 

24 Large-scale surface wind WNDLS2D 1 

25 Large-scale surface buoyance flux BFLXLS2D 1 

26 Temperature from last step T3DOLD 30 

27 Water vapor from last step Q3DOLD 30 

28 Liquid cloud water from last step QC3DOLD 30 

29 Ice cloud water from last step QI3DOLD 30 

30 Rain water from last step QR3DOLD 30 

31 Snow water from last step QS3DOLD 30 

32 Graupel water from last step QG3DOLD 30 

33 
Horizontal U component of the velocity 

vector from last step 
U3DOLD 30 

34 Large-scale temperature tendency DT3DIN 30 

35 Large-scale total water tendency DQ3DIN 30 

36 Large-scale zonal wind speed tendency DU3DIN 30 

37 
Large-scale meridional wind speed 

tendency 
DV3DIN 30 

 
Total Vertical Dimensionality 

 
995 

 

Table 2 SP Outputs 

Output # Physical Name Variable Vertical Dimensionality in GCM 

1 Temperature tendency SPDT 30 

2 Water vapor tendency SPDQ 30 

3 Liquid water tendency SPDQC 30 

4 Ice water tendency SPDQI 30 

5 Cloud fraction CLOUD 30 

6 Surface precipitation rate PRECT2D 1 

7 Surface ice precipitation PRECST2D 1 

 
Total Vertical Dimensionality 

 
152 
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4. Data sets 

To generate data for the development of NN emulation of SP, MMF was run from June 1
st
 to 

July 10
th

.  Since the model is driven by climatological SSTs, the model results do not correspond 

to any particular year. 3 hourly model output on June 20, 25, 30 and on July 5 and 10 were used 

in this study (45 time samples in total). Each time sample contains 144 × 96 = 13,824 horizontal 

grid points.  At each of these grid points, profiles (30 vertical levels) of all SP inputs and outputs 

listed in Tables 1 and 2 are available.  Almost all these data have been used to create the training, 

test, and validation data sets.  The input variable number 11, “Grid height at model interface”, 

which is a redundant variable (there is an almost identical variable “grid height at the middle of a 

model layer” there), was excluded.  “Rain water”, “Snow water”, and “Graupel water” from the 

previous integration step have been also removed after testing as NN inputs and determining that 

they do not affect the accuracy of NN emulations.  All other variables have been tested level by 

level and the levels with constant values have been removed from the corresponding profiles 

because they are not contributing to the SP input/output relationship learned by NN in the 

process of NN development.   Three additional variables have been added to each input profile: 

latitude, longitude, and time of the day for each profile, which are important for learning the 

diurnal cycle. 

Each created data set consists of records composed of input and output vectors.   Each of these 

vectors is composed of profiles of input variables and output variables correspondingly.   

Constituent profiles and formats of input and output vectors are presented in Tables 3 and 4.  

These tables show: the initial dimensionality of each constituent profile, its dimensionality after 

removing levels with constant values (usually zero or a very small number), the indexes of the 
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remaining non-constant levels in the profile (a reduced profile), and the indexes of the reduced 

profile in the input/output vector.   

Table 3  Format of the Input Vector in Data Sets 

Input # Physical Name Variable 

Initial 

Vert. 

Dim. 

Reduced 

Vert. 

Dim. 

Start:End 

indexes in 

profile 

Start:End 

indexes in 

data set 

1 Temperature T3D 30 30 0:29 0:29 

2 Water vapor Q3D 30 30 0:29 30:59 

3 Liquid cloud water QC3D 30 17 13:29 60:76 

4 Ice cloud water QI3D 30 25 5:29 77:101 

5 

Horizontal U 

component of the 

velocity vector 

U3D 30 30 0:29 102:131 

6 

Horizontal V 

component of the 

velocity vector 

V3D 30 30 0:29 132:161 

7 
Vertical pressure 

velocity 
OMEGA3D 30 30 0:29 162:191 

8 Pressure depth PDEL3D 30 18 12:29 192:209 

9 

Pressure at the 

middle of a model 

layer 

PMID3D 30 18 12:29 210:227 

10 

Grid height at the 

middle of a model 

layer 

ZMID3D 30 30 0:29 228:257 

11 
Radiative heating 

rate 
RAD3D 30 28 2:29 258:285 

12 

Aerosol number 

concentrations (for 

3 models) 

num_a1_NUM 30 30 0:29 286:315 

13 
 

num_a2_NUM 30 30 0:29 316:345 

14 
 

num_a3_NUM 30 30 0:29 346:375 

15 
Aerosol volume 

concentrations 
num_a1_VOL 30 30 0:29 376:405 

16 
 

num_a2_VOL 30 30 0:29 406:435 

17 
 

num_a3_VOL 30 29 1:29 436:464 

18 
Aerosol 

Hygroscopicity 
num_a1_HYG 30 30 0:29 465:494 

19 
 

num_a2_HYG 30 30 0:29 495:524 

20 
 

num_a3_HYG 30 30 0:29 525:554 

21 
Temperature from 

last step 
T3DOLD 30 28 2:29 555:582 
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22 
Water vapor from 

last step 
Q3DOLD 30 28 2:29 583:610 

23 
Liquid cloud water 

from last step 
QC3DOLD 30 17 13:29 611:627 

24 
Ice cloud water 

from last step 
QI3DOLD 30 25 5:29 628:652 

25 

Horizontal U 

component of the 

velocity vector 

from last step 

U3DOLD 30 28 2:29 653:680 

26 

Large-scale 

temperature 

tendency 

DT3DIN 30 28 2:29 681:708 

27 
Large-scale total 

water tendency 
DQ3DIN 30 28 2:29 709:736 

28 

Large-scale zonal 

wind speed 

tendency 

DU3DIN 30 28 2:29 737:764 

29 

Large-scale 

meridional wind 

speed tendency 

DV3DIN 30 28 2:29 765:792 

30 Surface pressure PS2D 1 1 0:0 793:793 

31 
Large-scale surface 

stress 
TAU2D 1 1 0:0 794:794 

32 
Large-scale surface 

wind 
WNDLS2D 1 1 0:0 795:795 

33 
Large-scale surface 

buoyance flux 
BFLXLS2D 1 1 0:0 796:796 

34 

time of day for the 

profile (from 0 to 

7) 

TIME2D 1 1 0:0 797:797 

35 Lat for the profile LAT2D 1 1 0:0 798:798 

36 Lon for the profile LON2D 1 1 0:0 799:799 

 

Total Vertical 

Dimensionality  
877 800 

  

 

  



19 

 

Table 4 Format of the Output Vector in Data Sets 

Output 

# 
Physical Name Variable 

Initial 

Vert. 

Dim. 

Final 

Vert. 

Dim. 

Start:End 

index in the 

profile 

Start:End 

index in 

the set 

1 
Temperature 

tendency from SP 
SPDT 30 26 4:29 0:25 

2 
Water vapor 

tendency from SP 
SPDQ 30 26 4:29 26:51 

3 
Liquid water 

tendency from SP 
SPDQC 30 18 12:29 52:69 

4 
Ice water tendency 

from SP 
SPDQI 30 25 5:29 70:94 

5 Cloud fraction CLOUD 30 24 6:29 95:118 

6 
Surface 

precipitation rate 
PRECT2D 1 1 0:0 119:119 

7 
Surface ice 

precipitation 
PRECST2D 1 1 0:0 120:120 

 
Total Vertical 

Dimensionality  
152 121 

  

 

Finally, 487,368 profiles created from 36 time samples, corresponding to June 20, 25, and 30 and 

July 5 were randomly split into two equal data sets: the training set and the test set (see Table 5).   

9 time samples corresponding to July 10 were used to create the validation set (see Table 5). 

   

Table 5  Data sets used for development of NN emulation of SP 

 File Name 
# of 

Profiles 

# of 

Inputs 

# of 

Outputs 

Time 

Covered 

Training Set MMF-4-days_glob_800-121.1 243,684 800 121 
4 days, 6/20, 

25, 30, & 7/5 

Test Set MMF-4-days_glob_800-121.0 243,684 800 121 “ 

Validation Set MMF-1-days_glob_800-121 121,842 800 121 One day, 7/10 
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5. Development of NN Emulations 

5.1  NN Architecture 

Selecting the NN architecture includes several steps.  First, it is our initial hypothesis that one 

NN emulator can be constructed for all global conditions.  Second, we select emulating NN 

inputs and outputs.  Third, we decide if we use a single NN with multiple outputs or an array of 

simpler NNs with one output to emulate the mapping (5).  Then, if we select using a single 

emulating NN with multiple outputs, several different approaches for output normalization are 

available.  A particular normalization procedure has to be chosen.  Finally, the NN complexity, 

that is the number of neurons in the hidden layer, k, has to be selected.  

5.1.1 Inputs and Outputs 

Not all SP inputs are necessarily to be included as inputs of emulating NNs.  Only those that are 

important for emulating input/output relationship must be included.  However, because we have 

only some qualitative knowledge based on physical intuition about importance of different 

inputs, we split all input variables into two classes: basic inputs and auxiliary inputs.  In the first 

class 31 variables from the current GCM integration step (variable numbers from 1 to 20 and 26 

to 36 in Table 3) are included; these variables are called “Basic” in Table 6.  The second class 

consists of five variables (variable numbers from 21 to 25 in Table 3) providing information 

from the previous GCM integration step. 

In this first attempt to develop a NN emulation of SP, we assumed that all basic variables are 

important to emulate SP input/output relationship; thus, we included them as inputs in all NN 

architectures considered below.  All inputs are normalized to the interval [-1,1].  Then we 

experimented (included or removed) with auxiliary input variables only.  The architectures 
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investigated here are presented in Table 6.  All investigated NN architectures have 121 outputs, 

i.e. include all seven output variables (five 3D and two 2D) presented in Table 4.    

For each of the presented architectures, for each output variable five error statistics (bias, RMSE, 

min error, max error, and correlation coefficient) have been calculated, 35 statistics totally per 

NN architecture.  Then NNs were scored using these statistics.  All NNs were scored for each of 

35 statistics separately.  Then for each NN all 35 scores were totaled and a total rank derived. 

The NNs were ranked accordingly (see the right column in Table 6).  All architectures were 

compared with the base architecture #0, where the emulating NN includes all 36 input variables.  

The NN with the architecture #III (the winner) has all error statistics very close to the base 

configuration #0; however, it has 57 less inputs than the base architecture, which significantly 

reduces the training time for #III as compared with the #0.   We would like to caution readers not 

to derive immediate conclusions about relative physical importance of various input variables 

based on the results of Table 6, as it is usually done with the linear regression results.   The 

mapping (5) is a very complex nonlinear mapping and NN is a very complex nonlinear statistical 

approximation with significantly correlated inputs and outputs.  In this situation a 

straightforward linear thinking is not a reliable tool.    

Table 6  Different NN Architectures investigated in the study. 

Architecture # Input variables included Rank 

0 All 36 variables  

I Basic
1
 + #25(u3dold) 3 

II Basic + #23(qc3dold) + #24(qi3dold) 4 

III Basic + #23(qc3dold) + #24(qi3dold) + #25 (u3dold) 1 

IV Basic + #22(q3dold) +  #23(qc3dold) + #24(qi3dold) + #25(u3dold) 5 

V Basic+ #21(t3dold)  + #22(q3dold) +  #23(qc3dold) + #24(qi3dold)  2 

 

                                                 
1
 Basic includes 31 variables numbers from 1 to 20 and 26 to 36 in Table 3. 
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For this feasibility study we selected the NN architecture #III for all following experiments.  All 

NNs considered below, that is all ensemble members, have the same number of inputs (n in (4); 

n = 746) and outputs (m in (4); m = 121).  The number of the inputs is 746 not 744 because two 

variables (TIME2D and LON2D) are converted into four cyclic variables:     
         

 
 , 

    
         

 
 ,     

        

   
 , and     

        

   
 . 

In MMF the GCM only requires a limited number (seven) of variables as output from the SP.  

The CRM inside SP, however, produces a much richer set of variables such, for example, as 

cloud fraction and optical depth, that are important diagnostics. We did not evaluate the fidelity 

of these output variables, but they could be included into the output vector Y.   
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5.1.2 NN complexity and calculation time 

The number of NN weights, Nc, (Krasnopolsky 2013) can be used as a measure of the 

complexity of the emulating NN, which should correspond to the functional complexity of a 

mapping represented by (3) or (5),   

mmnkNc  )1(                                                                 (7) 

However, when we compare performance of NNs with the different number of outputs, the 

number of NN weights per output, nc, is a better measure to use as a more adequate estimate of 

the NN complexity per output, 

1
)1(





m

mn
k

m

N
n c

c                                                            (8) 

Here n and m are the numbers of inputs and outputs respectively, and k is the number of neurons 

in the hidden layer.  In addition to the functional complexity, nc determines the numerical 

complexity of the NN emulation and the calculation time required to calculate one NN output. 

5.1.3 Single NN vs. an array/battery of NNs and normalization of outputs 

NN is a very flexible tool; it offers various options for an architecture of NN emulating a 

mapping represented by (3) or (5).  These options should be considered and an optimal one 

should be selected taking into account physical properties of the mapping and numerical 

requirements for the NN emulation.  Our mapping has n = 746 inputs and m = 121 outputs.   We 

can choose to emulate it with a single NN that has n = 746 inputs and m = 121 outputs or with an 

array (a battery) of m = 121 NNs with n = 746 inputs and one output each.  Many intermediate 

solutions are available; however, we will not consider them here, because comparisons of the 

two aforementioned cases already have led us to a clear conclusion. 
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To compare a single emulating NN with multiple outputs with the array of emulating NNs with 

one output each, we trained several NNs with multiple outputs and several NNs with a single 

output.  We selected a couple of particular outputs (among 121 outputs) for training NNs with 

one output and for comparisons with the same outputs of a single NN with 121 outputs.  As the 

first single output for NNs with the single output we selected the value of the temperature 

tendency, spdt, at the lowest (closest to the ground) level, where the magnitudes of spdt and of its 

errors are maximal.  The reason that the tendencies are largest at the surface is because of the 

deposition of heat into the surface layer from the surface fluxes.  

We trained several NNs with n = 746 inputs and one output each and with k = 1, 2, 3, and 4 in 

one hidden layer.  Then, for each trained NN, we calculate error statistics for the single output 

and NN complexity, using eq. (8) with n = 746 and m = 1.  Also we trained several emulating 

NN with n = 746 inputs, m = 121 outputs, and with k = 25, 50, 75, 100, 125, and 150 each.  NN 

outputs have been normalized using the normalization (10) defined below.  For each of these 

emulating NNs with multiple outputs, we calculated statistics for the same single output, for 

which NNs with a single output have been trained (spdt at the lowest, closest to the ground, 

level).  Also for these NNs the complexity per output, nc, have been calculated, using eq. (8) with 

n = 746 and m = 121.  Fig. 1 presents the comparison of NN approximation RMSEs for spdt at 

the lowest, closest to the ground, level, for all aforementioned emulating NNs. 
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Fig.1 NN approximation RMSEs (calculated on independent test set) for a single output, spdt at the lowest vertical 

level vs. NN complexity per output, nc.  Emulating NNs with n = 746, m = 121 (all NNs use the output 

normalization (10)) and various number of hidden neurons, k (shown with numbers) are represented by the red solid 

line with asterisks. The NNs with n = 746, m = 1 and various number of hidden neurons, k (shown with numbers) 

are represented with the violet dashed line with circles. The blue solid line with circles shows results for RMSEs for 

NNs with n = 746, m = 1 and various number of hidden neurons calculated on the training set, for comparison. 

At the first sight, the results presented at Fig. 1 may contain two seeming “paradoxes”.  First, the 

complexity per output of a NN with one output and two neurons in one hidden layer is greater 

than that of a NN with 121 outputs and 150 hidden neurons in one hidden layer.  Formally, this 

result can be verified using eq. (8); however, to understand it better, we should analyze eq. (4).  

As can be easily concluded from this equation, for the NN with any number of outputs, outputs 

are built from the same k building blocks (basis functions or hidden neurons),  .  All k basis 

functions must be calculated, independently of the number of outputs, for NN with any number 

of outputs.  This operation gives the major contribution to NN complexity and computation time.  
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Then, in the case of multiple outputs, calculating m linear combinations of basis function to 

obtain m outputs does not add significantly to the NN complexity and calculation time (as 

compared with m = 1), reducing at the same time the complexity (and calculation time) per 

output (as compared with a single output NN) due to m in the denominator of eq. (8). 

The second “paradox” in the results depicted in Fig. 1 is that a single NN with multiple outputs 

provides a significantly higher accuracy of approximation than a NN with a single output with 

the same complexity per output, nc.  Here we should notice that the SP outputs are not 

completely independent; there are physical relationships between them defined by imbedded 

CRM physics.  The SP outputs satisfy these relationships with high accuracy because the 

relationship is explicitly (or implicitly) included into the imbedded CRM equations.  Thus, these 

relationships are implicitly imbedded in the output data presented to NN in the training set as 

correlations between outputs.  There are at least two different types of such correlations.  The 

first type is the correlations due to the aforementioned physical relationships between different 

output variables.  Also, some of the output variables are vertical profiles.  Thus, the second type 

of correlations between outputs is the correlations between adjacent components of the vertical 

profiles that constitute the output vector.  These correlations are due to the fact that vertical 

profiles are discretized continuous functions.  Both types of the aforementioned correlations can 

constitute a significant and irreplaceable (see Fig.2 and the discussion below) part of information 

about mappings (3 or 5) containing in the training set.   

Obviously, when a NN emulation with a single output (m = 1) is trained, this part of information 

is completely lost, which explains why the accuracy of the NN emulation with multiple outputs 

is significantly better, for a selected single output, than the accuracy of the same output when it 

is emulated by a NN with this single output with the same complexity per output.  Thus, for 
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multidimensional mappings, it is preferable to use a single emulating NN with multiple outputs 

than an array of NNs with a single output, both in terms of the approximation accuracy and the 

computational performance. 

Obviously, even if we train a single NN with multiple outputs, the outputs of the NN emulations 

satisfy the aforementioned relationships only approximately but with high accuracy.  If even 

higher accuracy of these relationships is desired (e.g., for conservation relationships), some 

constraints may be formulated in the Y (output vector) terms and can be taken outside of the NN 

emulation and imposed/included there as a post-processing step.  In this case, they are applied to 

the NN output outside, i. e., in GCM. Note that we have similar situations with the long and short 

wave radiation parameterizations.  Their outputs (heating rates and fluxes) are related.  To force 

NN outputs to satisfy this relationship exactly, a balancing procedure has been developed 

(Krasnopolsky et al. 2010), which is applied to NN outputs as a post-processing step. Also, some 

constraints may be included in NN or applied in the process of the NN training. 

A choice of a normalization of outputs is closely related to our choice of a single NN with 

multiple outputs vs. an array of NNs with a single output each.  For NN with a single output the 

accuracy practically does not depend on the type of the output normalization (Krasnopolsky 

2013).  For a single NN with multiple outputs at least two different types of normalization can be 

introduced.   The multiple outputs can be normalized independently; in this case the q
th

 output 

can be normalized as,  
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                                                             (9) 

where qy  and σq are the mean and SD of the q
th

 output, yq, and α ≤ 1 is introduced to accelerate 

the training of the linear weights a in the output layer of the NN (4).  This normalization 
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improves approximation accuracies for small outputs; however, if these outputs are noisy, it 

propagates the noise to other outputs.  Normalization (9) also reduces or even destroys 

correlations that may exist between outputs.  

An alternate normalization is,     

                                                                                                                     (10) 

where σ is the SD for all outputs or for a group of L outputs,  
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where P is the number of records in the training set and y  is the mean value of L outputs in the 

training set. The normalization (10) normalizes the entire group of L outputs (a profile) 

coherently; thus, it preserves all correlations between outputs in the group.  Thus, each profile 

contributing in Y is normalized independently.  The normalization (10) improves the accuracy of 

larger outputs because it enhances their contribution in the error function, which is minimized 

during the NN training.   

Fig. 2 presents the comparison of NN approximation RMSEs for spdqc at the vertical level #11.  

At this level spdqc reaches a maximal value.  Here we used the same six emulating NN with n = 

746 inputs, m = 121 outputs, and with k = 25, 50, 75, 100, 125, and 150 each, with output 

normalized using (10) (the red solid line with asterisks).  In addition we trained five single 

emulating NN with n = 746 inputs, m = 121 outputs, and with k = 50, 75, 100, 125, and 150 each, 

with output normalized using (9) (the pink solid line with squares).  For comparison, the results 

for four NNs with the single output are presented here also (the violet dashed line with circles).   
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Fig.2 NN approximation RMSEs (calculated on independent test set) for a single output, spdqc at the vertical level 

#11 vs. NN complexity per output, nc.  Emulating NNs with n = 746, m = 121 (all NNs use the output normalization 

(10)) and various number of hidden neurons, k (shown with numbers) are represented by the red solid line with 

asterisks. The pink solid line with squares shows RMSEs for emulating NNs with n = 746, m = 121 (all NNs use the 

output normalization (9)) and various number of hidden neurons. The NNs with n = 746, m = 1 and various number 

of hidden neurons, k (shown with numbers) are shown with the violet dashed line with circles for comparison.  

Fig. 2 shows, that NNs using normalization (10) can take significant advantage of substantial 

information about correlations between outputs available in the training set.  This information is 

really important and significant.  Fig. 2 shows that NNs using normalization (9), which partly 

destroys this information or NNs with a single output, may never reach such approximation 

accuracy as NNs using normalization (10).  For the variables like spdqc, which demonstrate high 

level of stochasticity and uncertainty, a proper normalization of outputs is essential.  It allows 

NN to use an additional information about the mapping to be emulated which is imbedded in an 
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output vector as correlations between the vector components and, thus, to reduce the output 

uncertainty. 

Finally, based on the aforementioned results, the seven output variables have been separated in 

two groups, in terms of the normalization.  Five vector variables (profiles) (see Table 4) have 

been normalized using (10), each profile separately.  Two scalar surface variables have been 

normalized separately using (10), which in this case is equivalent to (9).  All following results 

have been obtained with NNs, which use this normalization of outputs.  This normalization 

reduces the complexity and improves the performance of the emulating NN. 
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5.1.4  Number of Hidden Neurons 

In previous sections we selected a single NN with multiple outputs to emulate SP.  We also 

selected inputs and outputs and the normalization of outputs.  The only parameter of the NN 

architecture that remains to be chosen is the number of hidden neurons, k, which determines the 

emulating NN complexity. Ideally, the NN complexity should correspond to the mapping (5) 

functional complexity (Krasnopolsky 2013).  However, because there are no mathematical tools 

developed to estimate nonlinear mapping complexities, k, is usually determined empirically.   

We have trained six emulating NNs with n = 746 inputs, m = 121 outputs, and with k = 25, 50, 

75, 100, 125, and 150 each.  The corresponding values of nc are shown in Table 7.  The 

convergences of the approximation RMSEs are shown in Fig. 3 for four prognostic outputs 

(profiles) of SP (defined in Table 4): spdt, spdq, spdqc, and spdqi.  Blue lines show RMSEs 

calculated using the training set and red – the independent test set.  RMSEs are shown vs. the NN 

complexity per output, nc. Fig. 3 shows RMSEs for six trained NN mentioned above (shown with 

asterisks).   

Table 7 The NN complexity per output (the number of weights per output), nc, corresponding to various 

numbers of hidden neurons k. 

k 25 50 75 100 125 150 

nc 180 360 539 718 898 1077 

 

RMSE is calculated for the entire output profile as, 
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where Yi
j
 and Yi

j
NN are outputs from the original SP and its NN emulation, respectively, the index 

i=1,…, P determines the record number in the validation data set, P is the number of the records, 
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and j = t+1,…,t+ L is the vertical index of the corresponding profile in the SP output vector (t is 

the index of the first profile component in the output vector Y) where L is the number of the 

profile vertical components.      

As can be concluded from Fig. 3, for k > 50, the RMSEs calculated on the independent test set do 

not improve (for spdqi), improve insignificantly(for spdqc), or improve very little (less than 8% 

for spdt and spdq).  Because k (and nc) determines the NN estimation time and, more 

importantly, the NN training time, in our first attempt to emulate SP, we selected k = 50 as a 

reasonable  estimate of SP and the emulating NN complexity. 
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Fig. 3 Convergences of the approximation 

RMSEs for four prognostic outputs 

(profiles) of SP: spdt, spdq, spdqc, and 

spdqi are shown.  Blue lines show RMSEs 

calculated using the training set and red – 

the independent test set.  RMSEs are 

shown vs. the NN complexity per output, 

nc. The figure shows RMSEs for NNs with 

k = 25, 50, 75, 100, 125, and 150 each 

(shown with asterisks).  Corresponding 

values of nc are shown in Table 7.   
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5.2  NN Ensemble  

After all parameters of the emulating NN have been selected, an ensemble of ten NNs with n = 

746 inputs, k = 50 hidden neurons, and m = 121 outputs normalized using (10) has been trained.  

The NN ensemble was generated using different initial values for NN weights to initialize the 

NN training.  Ten different initial values (all small random numbers) for NN weights have been 

selected following the initialization algorithm developed by Nguyen and Widrow (1990).   

The NN ensemble has been trained to emulate the mapping (5), because this mapping is a 

stochastic mapping (see discussions in 2.3.2 and in Section 6 below).  A single NN may not be 

an adequate tool for emulating stochastic mappings, which may be better emulated using a NN 

ensemble (Krasnopolsky at al. 2011).  This ensemble of ten NNs has been used in all following 

calculations as an emulation of SP.  In the following sections it will be called NN-SP.  The 

ensemble mean (EM) was calculated as a conservative mean, i.e., a simple statistical average of 

ensemble member outputs.  Such an ensemble is called the conservative one.  For example, an 

NN EM for spdt profile is calculated as, 





s

j

j

ii spdt
s

SPDT
1

1
, i = 1,…,P                                                       (13) 

where P is the number of records in the validation data set, spdti
j
 is a profile of spdt calculated by 

the NN ensemble member number j for the input data record (profile) number i, s (s = 10 in our 

case) is the number of NN ensemble members, and SPDTi is the EM (profile) of spdt for the data 

record number i.  
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6. Validation on an Independent Data Set  

6.1  Calculated statistics 

The NN ensemble described in Sect. 5.2 has been applied to the independent validation set 

described in Section 4 (Table 5).  Various statistics have been calculated for each ensemble 

member NN, as well as for the conservative EM (13).   

 

For each of ten ensemble member NN, for each of 121 outputs, nine statistics have been 

calculated.  They include four outputs statistics (mean value, standard deviation, minimal and 

maximal value of the output variable) plus five error statistics (bias, RMSE, min error, max 

error, and correlation coefficient calculated vs. simulated SP data in the validation set).  All-in-

all, 1,089 statistics per ensemble member NN were calculated, plus 1,089 statistics for the EM, 

that is 11,979 statistics per the NN ensemble (10 members plus EM) totally.  In addition, for 121 

SP outputs available in validation datasets four output statistics (mean value, standard deviation, 

minimal and maximal value of the output variable) per output (484 statistics totally) were 

calculated.   

To make sense of this enormous amount of information and reduce its volume, we combined 

together all outputs that represent a 3D variable in a profile and consider the profile statistics 

(integrated vertically over L vertical levels).  The NN outputs were treated in the same way.  

Thus, we have five 3D variables (spdt, spdq, spdqc, spdqi, and clouds) and two 2D variables 

(prect2d precst2d).  In this way, we obtained nine statistics per 3D or 2D output.  They include 

four outputs statistics per se (mean value, standard deviation, minimal and maximal value of the 

output 3D or 2D variable) plus five error statistics (bias, RMSE, min error, max error, and 

correlation coefficient) calculated vs. simulated SP data in the validation set.  As a result we 
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reduced 11,979 statistics to 630 ones for the NN ensemble totally.  It is still a formidable task to 

analyze these 630 statistics.   

6.2  Taylor diagrams for stochastic and deterministic outputs 

To present 350 of 630 statistics in a vivid easily comprehensible way, we used the Taylor 

diagram (Taylor 2001).  The Taylor diagram allowed us to present results for all seven SP 

outputs and all ten ensemble members together with the ensemble average in a single figure (Fig. 

4).  The diagram is plotted in polar coordinates (ρ,φ).  Each point at the diagram corresponds to 

one of the members of the NN ensemble or to NN EM for one of seven SP output variables 

marked by one of seven symbols (see the legend of Fig. 4).  For each of these points the radial 

distance from the origin to the point, ρ, is equal to the ratio of the NN output field standard 

deviation, σo, to the corresponding validation SP output field (from the validation set) standard 

deviation, σv,  

  
  

  
                                                                        (14) 

The azimuthal angle φ = cos
-1

(CC), where CC is the correlation coefficient between the NN 

output and the corresponding variable in the validation set.  The azimuthal position of the point 

gives the CC between the two fields, and the radial lines are labeled by the values of CC at the 

outer circle.  For all output variables from the validation data set ρ = 1 and CC = 1 (φ =cos
-1

(1) = 

0).  Thus, all outputs have the same reference point (1,0) at the horizontal axis of the diagram.   

The closer the output point to the reference point, the smaller the approximation error is.  The 

dashed lines measure the distance from the reference point and, as a consequence indicate the 

centered RMS errors (or error standard deviations) normalized to σv.  Thus, the radial position of 

the diagram point indicates the accuracy of NN in representing the output variance (the closer to 

the circle with the radius ρ = 1 the better), whereas the azimuthal angle reflects the phasing of the 
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NN output profiles with respect to validation profiles (the closer to the horizontal line the better).  

In addition to this information, the Taylor diagram shows a complimentary score, S, which 

characterizes NN skills in emulating the corresponding mapping.  This score is calculated as, 

   
       

   
 

 
         

                                                                          (15) 

where R is the correlation coefficient CC, R0 = 1 in our case and ρ is defined by (14).  Isolines of 

S are shown by thin solid curves in the diagram. 

Fig. 4 shows the Taylor diagram for all seven SP outputs and all ten ensemble member NNs 

together with the ensemble average.  Different outputs and their EMs are presented with different 

symbols of different colors (see the figure legend); thus, a group of eleven points depicted with 

the same symbol and color presents results for a particular output of all ten NN ensemble 

members plus the EM for this output.  Fig. 4 clearly suggests that SP has two qualitatively 

different types of outputs.  For two outputs spdqi and spdqc NN results demonstrate much lower 

correlation with the validation data, when compared grid point by grid point, than NN results for 

spdt, spdq, clouds, and prect2d.  The output precst2d is somewhere in between but closer to the 

second type.   

Another characteristic feature of outputs of the first type and precst2d is that the ensemble spread 

for these outputs are significantly larger than that for the second type of the outputs.  This 

significant spread indicates the higher level of uncertainty and stochasticity in the outputs of the 

first type; these outputs are “stochastic” outputs.  The outputs of the second type we will call 

“deterministic” outputs.  
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Fig. 4 Taylor diagram for all seven SP outputs of all ten ensemble member NNs together with the EM.  Seven 

different outputs and their EMs are presented with different symbols of different colors (see the figure legend). Solid 

isolines identify skill score values, dashed lines indicate correlation. The number of the ensemble member indicated 

by a number written beside the symbol.  

 

It is noteworthy that for the stochastic outputs the spread of the ensemble members is mainly in 

the radial direction.  They do not show significant variations in correlation coefficient and 

RMSEs.  Keeping these results in mind, let us look again at the conversions of NN outputs to SP 

outputs on the test set with the increase of the number of hidden neurons (NN complexity), 

which we investigated in Section 5.1.4 (Fig. 3).  In that section we investigated the conversions 
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in terms of approximation RMSE; now, however, we will use a Taylor diagram to observe the 

conversions from a different perspective. 

Fig. 5 shows a Taylor diagram for all seven SP outputs of emulating NNs with six different 

numbers of hidden neurons (see the upper left legend).  Seven outputs are presented with 

different symbols of different colors (see the upper right legend).  There are no ensembles here; 

for each number of hidden neurons only one emulating NN is presented.  As the previous figure, 

this figure demonstrates significant differences in behavior of stochastic and deterministic 

outputs when the number of hidden neurons (NN complexity) increases.  The deterministic 

outputs converge to the reference point (1,0) on the Taylor diagram (perfect correlation, and 

variance).  For these outputs RMSE decreases and CC increases; however, improvement in ρ is 

minor.  The stochastic outputs behavior is very different; they move in the radial direction 

toward the circles with increasing ρ –> 1.  It means that the variability (standard deviation σo) of 

this NN output converges to variability of the corresponding SP output.  For spdqi, ρ almost 

reaches the unit circle; for spdqc it steadily increases and reaches 0.5. However, the phasing (i.e., 

NN output profile to SP output profile correspondence) does not improve significantly; that is 

RMSE and CC do not improve significantly.  It is noteworthy, that there is also a noticeable 

improvement in emulating NNs performances for stochastic outputs in terms of the score S, 

because this score takes into account ρ as well. 



40 

 

 

Fig. 5 Taylor diagram for all seven SP outputs of emulating NNs with six different numbers of hidden neurons (see 

the upper left legend).  Seven different outputs are presented with different symbols of different colors (see the 

upper right legend).   
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6.3  More approximation statistics 

To obtain more detailed information about the approximation quality of the emulating NNs, 

several different statistics are plotted below.  The error statistics are:  

(i) RMSE (12);  

(ii)  RMSE profile calculated as,  

                  LttjYY
P

RMSE
P

i
NN

j

i

j

ij  


,,1;
1

1

2
                  (16)          

where Yi
j
 and Yi

j
NN are outputs (without normalization) from the original SP and 

its NN emulation, respectively, the index i=1,…, P determines the record number 

in the validation data set, P is the number of the records, and j = t+1,…,t+ L is the 

vertical index of the corresponding profile in the SP output vector (t is the index 

of the first profile component in the output vector Y), here L is the number of the 

profile vertical components; 

(iii) σRMSE profile calculated as,  

                          Lttj
RMSE

RMSE
j

j

j  ,,1; 


             (17)                                                           

where RMSE profile component RMSEj at each vertical level is divided by the 

standard deviation of the output at this level σj 

(iv) Mean output profile, calculated over the entire validation data set of P records; 

(v) Probability density function (pdf) for an output over the entire validation data set 

of P records. 
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6.3.1  3D deterministic outputs 

First, we consider the results for three deterministic 3D outputs spdt, spdq, and clouds. Fig. 6 

shows RMSE (16) and σRMSE (17) (left and right panels respectively) profiles for spdt for ten 

NN ensemble members (blue curves) and EM (thick red curve).  The absolute error (RMSE) 

decreases with the height, while the relative error (σRMSE), normalized to the level variability σ, 

increases because variability decreases faster than the error.  RMSE sharply increases when 

approaching the surface (L = 28), while σRMSE sharply decreases because, approaching the 

surface, the variability of the data increases much faster than the error. σRMSE never exceeds 

one sigma.  The spread of NN ensemble members is small (as in Figs. 4 and 5) and the ensemble 

mean slightly reduces both errors.   

 

Fig. 6 RMSE (left panel) and σRMSE (right panel) profiles for spdt for ten NN ensemble members (blue curves) and 

EM (thick red curve).   

 

Actually only testing NN-SP in the MMF can give the final answer to the question if the rate of 

decreasing the absolute error with height (Fig. 6, left) is sufficient for the accurate performance 

of NN-MMF.  If it shows that the magnitudes of relative errors (Fig. 6, right) at higher model 



43 

 

levels are important, the normalization of outputs has to be changed to (9) or/and the higher 

weight have to be subscribed to the higher level errors in the error function during the training. 

 

Fig. 7 Probability density functions for spdt for three NN ensemble members (dashed, dot-dashed and two dots-

dashed curves), EM (green solid line) and SP output (red solid line).   All vertical levels are included here and in 

Figs. 10, 13, 16 and 19.  The vertical axis has a logarithmic scale. 

Fig. 7 shows pdfs for spdt for three NN ensemble members, EM, and SP output.  Ensemble 

members and EM reproduce pdf of SP output very well, slightly (notice the logarithmic scale of 

the vertical axis) reducing values at the far tails.  The asymmetry of pdf is very well reproduced.                                                                
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Fig. 8 Mean vertical profile of spdt for ten NN ensemble members (blue curves), EM (thick green curve), and the SP 

output (thick red curve).   

Fig. 8 presents mean vertical profiles of spdt calculated over the entire validation data set using 

ten NN ensemble members (blue curves), EM (thick green curve), and the SP output (thick red 

curve).  All NN ensemble members as well as EM represent the validation profile sufficiently 

well.  
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Fig. 9 RMSE (left panel) and σRMSE (right panel) profiles for spdq for ten NN ensemble members (blue curves) 

and EM (thick red curve).   

 

Fig. 10 Probability density functions for spdq for three NN ensemble members (dashed, dot-dashed and two dots-

dashed curves), EM (green solid line) and SP output (red solid line). The vertical axis has a logarithmic scale. 
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Fig. 11 Mean vertical profile of spdq for ten NN ensemble members (blue curves), EM (thick green curve), and the 

SP output (thick red curve).   

Fig. 9 shows RMSE (16) and σRMSE (17) (left and right panels respectively) profiles for spdq 

for ten NN ensemble members (blue curves) and EM (thick red curve).  The behavior of errors is 

similar to that for spdt (Fig. 6).  Here also σRMSE never exceeds one sigma.  The spread of NN 

ensemble members is also small (as in Figs. 4 and 5) and ensemble mean slightly reduces both 

errors.  Fig. 10 shows pdfs for spdq for three NN ensemble members, EM, and SP output.  
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Ensemble members and EM reproduce pdf of SP output rather well; they reproduce even the 

asymmetry of the curve.  However, both tails of pdf are suppressed in NN’s pdfs, which leads to 

a slight reduction of the variability of NN generated spdq, which can be seen in Figs. 4 and 5.  

The reduction of the variability is minimal because the tails of pdf have very small magnitude 

(notice the logarithmic scale of the vertical axis).  Fig. 11 presents mean vertical profiles of spdq 

calculated over the entire validation data set using ten NN ensemble members (blue curves), EM 

(thick green curve), and the SP output (thick red curve).  All NN ensemble members as well as 

EM represent the validation profile sufficiently well.  

Figs. 12 to 14 present the same statistics for clouds SP output.  In this case the spread of NN 

ensemble members for RMSE and σRMSE (Fig. 12) is greater than for two previous outputs and, 

therefore, the reduction of these errors by EM is more pronounced.  As for pdfs (Fig. 13), NNs 

slightly increase the amount of low and medium cloudiness and slightly reduce the amount of 

heavy cloudiness as compared with the SP produced cloudiness.  EM for heavy cloudiness (the 

green line) is closer to SP (the red line) than for all ensemble members.  The mean clouds profile 

(Fig. 14) is represented by the members of NN ensemble and by EM sufficiently well, better than 

the temperature and water vapor.  

 

  



48 

 

 

Fig. 12 RMSE (left panel) and σRMSE (right panel) profiles for clouds for ten NN ensemble members (blue curves) 

and EM (thick red curve).   

 

Fig. 13 Probability density functions for clouds for three NN ensemble members (dashed, dot-dashed and two dots-

dashed curves), EM (green solid line) and SP output (red solid line). The vertical axis has a logarithmic scale. 
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Fig. 14 Mean vertical profile of clouds for ten NN ensemble members (blue curves), EM (thick green curve), and the 

SP output (thick red curve).   
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6.3.2 3D stochastic outputs 

Next we consider the results for two stochastic 3D outputs spdqi and spdqc. 

 

Fig. 15 RMSE (left panel) and σRMSE (right panel) profiles for spdqi for ten NN ensemble members (blue curves) 

and EM (thick red curve).   

 

Fig. 16 Probability density functions for spdqi for three NN ensemble members (dashed, dot-dashed and two dots-

dashed curves), EM (green solid line) and SP output (red solid line). The vertical axis has a logarithmic scale. 
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Fig. 17 Mean vertical profile of spdqi for ten NN ensemble members (blue curves), EM (thick green curve), and the 

SP output (thick red curve).   

Fig. 15 shows RMSE (16) and σRMSE (17) (left and right panels respectively) profiles for spdqi 

for ten NN ensemble members (blue curves) and EM (thick red curve).  The ensemble members 

demonstrate significant spread especially for higher levels, which indicates significant 

uncertainty in spdqi.  σRMSE enhances the presentation of the spdqi uncertainty.  The EM (red 

curve) reduces the uncertainty of spdqi significantly.  For EM, σRMSE never exceeds one sigma.  
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Fig. 16 shows pdfs for spdqi for three NN ensemble members, EM, and SP output.  Ensemble 

members and EM reproduce pdf of SP output rather well; they also reproduce a slight asymmetry 

of the distribution.  Even both tails of pdf are represented satisfactory.  Fig. 17 presents mean 

vertical profiles of spdqi calculated over the entire validation data set using ten NN ensemble 

members (blue curves), EM (thick green curve), and the SP output (thick red curve).   NN 

ensemble members have a significant spread around the SP profile, while EM represents the 

validation profile rather well.  

Fig. 18 shows RMSE (16) and σRMSE (17) (left and right panels respectively) profiles for spdqc 

for ten NN ensemble members (blue curves) and EM (thick red curve).  The ensemble members 

demonstrate significant spread at σRMSE plot, which support conclusion that σRMSE is 

significantly more sensitive to the uncertainty in the data than RMSE.  The EM (red curve) 

significantly reduces the uncertainty of spdqc.  For EM, σRMSE never exceeds one sigma.  Fig. 

19 shows pdfs for spdqc for three NN ensemble members, EM, and SP output.  Ensemble 

members and EM reproduce pdf of SP output well only in a limited area around the maximum.  

Both tails of the pdf are significantly suppressed.  Fig. 20 presents mean vertical profiles of 

spdqc calculated over the entire validation data set using ten NN ensemble members (blue 

curves), EM (thick green curve), and the SP output (thick red curve).   NN ensemble members 

have a significant spread around the SP profile; they strongly oscillate around the SP profile, 

while EM reduces the amplitude of these oscillations and is closer to SP profile.  
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Fig. 18 RMSE (left panel) and σRMSE (right panel) profiles for spdqc for ten NN ensemble members (blue curves) 

and EM (thick red curve).   

 

Fig. 19 Probability density functions for spdqc for three NN ensemble members (dashed, dot-dashed and two dots-

dashed curves), EM (green solid line) and SP output (red solid line). The vertical axis has a logarithmic scale. 
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Fig. 20 Mean vertical profile of spdqc for ten NN ensemble members (blue curves), EM (thick green curve), and the 

SP output (thick red curve).   
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6.3.3 2D deterministic outputs 

Finally, we consider results for two deterministic 2D outputs prect2d and precst2d.  Fig. 21 show 

the standard deviation of NN approximation errors for prect2d vs. bias for prect2d for ten 

ensemble members (black asterisks) and EM (red diamond).  The ensemble bias (a systematic 

error) is equal to the mean bias of the members as expected when using the simple conservative 

method to calculate the ensemble average.  The EM error standard deviation (random error) is 

significantly smaller than the random errors of the ensemble members.  

 

Fig. 21 Standard deviation of error vs. bias for prect2d.  Ensemble members are shown with asterisk and EM with 

red diamond.  

Fig. 22 shows the correlation coefficients for prect2d for ten ensemble members (black asterisks) 

and EM (red diamond).  EM correlation coefficient is significantly better than those for NN 

ensemble members.  Fig. 23 shows pdf for prect2d.  Pdfs for three NN ensemble members 

(dashed, dot-dashed and two dots-dashed curves), EM (green solid line) and SP output (red solid 

line) are shown. The vertical axis has a logarithmic scale.  EM represents the SP pdf very well. 
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Fig. 22 Correlation coefficients for prect2d ensemble members are shown with asterisk and EM with red diamond. 

 

Fig. 23 Probability density functions for prect2d for three NN ensemble members (dashed, dot-dashed and two dots-

dashed curves), EM (green solid line) and SP output (red solid line). The vertical axis has a logarithmic scale. 
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Fig. 24 Standard deviation of error vs. bias for precst2d.  Ensemble members are shown with asterisk and EM with 

red diamond.  

 

 

Fig. 25 Correlation coefficients for precst2d ensemble members are shown with asterisk and EM with red diamond. 
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Fig. 26 Probability density functions for precst2d for three NN ensemble members (dashed, dot-dashed and two 

dots-dashed curves), EM (green solid line) and SP output (red solid line). The vertical axis has a logarithmic scale. 

Figs. 24-26 show the same statistics for precst2d as Figs. 21-23 for prect2d.  For precst2d, EM 

does not provide such very significant improvements as for prect2d; however, EM random error 

and CC are close to those of the best ensemble member.  As for pdf, on average the EM pdf is 

close to the SP pdf. 
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6.4  Evaluation of the speedup for NN-SP 

To estimate the calculation speedup, we used the MMF timing: one year of MMF simulations 

takes about 0.1million CPU hours.  It provides an estimate 0.5s per SP call. For the emulating 

NN, 3,000 calls take approximately 0.6s, that is 0.0002s per call.  Taking into account that one 

call of NN-SP consists of 10 NN calls (every time the ensemble of 10 NNs is evaluated), one 

NN-SP call takes approximately 0.002s.  Thus, one NN-SP call is about 250 times faster than 

the SP call.  It means that the NN-MMF will run at least as fast as the current CAM-5.   It 

opens an attractive practical opportunity to extensively use and carefully validate the NN-MMF 

in a climate mode by running decadal and longer climate simulations.   
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6.5  Discussion 

 

In this section we presented the results of validation of an ensemble of ten NNs emulating SP on 

an independent set of simulated data.  The validation was performed on an independent data set, 

which was not used for NN training or for selecting the NN architecture.  Despite the fact that 

the amount of data that we have for training and validation is limited (only four days of a MMF 

ran was saved), we believe that we can derive rather general conclusions from our study. 

Two different types of SP outputs can be distinguished: two “stochastic” outputs spdqi and spdqc 

and five “deterministic” outputs.  The stochastic outputs spdqi and spdqc effectively represent 

subgrid scale processes with smallest special and temporal scales that are much more sensitive to 

the uncertainty in the imbedded CRM initial conditions (see Section 2.3.2).  This uncertainty 

results in the uncertainty in the corresponding SP outputs, which should be treated as stochastic 

outputs.  The deterministic outputs are much better defined because they represent lager scale 

processes that are much less sensitive to the uncertain initial conditions of the imbedded CRM.  

The level of uncertainty of these outputs is much smaller than that of the stochastic ones, while it 

is still not zero.  It was shown that the NN ensemble provides a more adequate tool for emulating 

SP: 

1. For the deterministic SP outputs, the NN ensemble members and EM demonstrate a good 

level of approximation accuracy.  They show low bias and RMSE and high CC with 

respect to the validation set, thus, demonstrating a good capability of reproducing 

deterministic outputs for each individual set of inputs.  They also accurately reproduce 
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major statistics of deterministic outputs: variance, mean profile (for 3D outputs) or mean 

value (for 2D outputs), and pdf.   

2. For the stochastic SP outputs, NN ensemble members demonstrate a reasonable 

capability of reproducing major statistics of stochastic outputs: variance, mean profile 

(for 3D outputs) or mean value (for 2D outputs) (and therefore, they have small bias), and 

pdf.  EM significantly improves the results.  However, the NN ensemble members and 

EM do not show a good level of approximation accuracy in reproducing outputs for each 

individual set of inputs (RMSE is not small and CC is not high enough). 

3. Summarizing 2 and 3, for the deterministic outputs, the emulating NN provides good 

approximation both in terms of the regular approximation metrics (e.g., mean square 

error and CC) and in terms of data statistical properties (mean, variance, and pdf) as well.  

In other words, in this case NN approximates both statistical properties of the training set 

and the data set record by record.  For the stochastic outputs (especially for spdqi), NN 

provides approximation in terms of statistical metrics (e.g., mean, variance, pdf).  In this 

case it approximates the statistical properties of the training set; however, it does not 

provide a good enough approximation of the data record by record.   

4. For the stochastic SP output spdqc the errors in approximating statistical properties of the 

output are higher (especially for the variance) than for the stochastic output spdqi.  It may 

suggest that: (i) an important input information is missing, (ii) the length and 

representativeness of our limited data set is not sufficient for training this output, and/or 

(iii) this output is much more sensitive to the uncertainty in imbedded CRM initial 

conditions and some additional measures have to be taken to improve the NN accuracy 

for this output (see Conclusions). 
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The NN-SP provides an impressive, two orders of magnitude, speedup as compared with the 

original SP. It may provide a practical opportunity to use NN-MMF for decadal and longer 

climate simulations.  It is noteworthy that all our estimates of the emulating NNs accuracy 

and speedup presented in this section are preliminary.  The final conclusion about the quality 

of the emulating NN and its ability to substitute SP in the MMF runs can be derived only 

after validation of NN-SP in MMF, when parallel runs of the original MMF and NN-MMF 

are performed.  
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7. Conclusions 

Some important methodological issues of the representation of a cloud “superparameterization” 

(SP) with a Neural Net emulation (NN) were discussed. The methodological issues include: 

1. Certain fields used within the parameterization that modulate the response of SP output to 

input fields are not available to the NN. The uncertainty introduced by this has been 

interpreted as stochasticity; thus, the SP has been interpreted as a stochastic mapping and 

a NN ensemble has been selected as an adequate strategy for sampling from that 

stochastic ensemble. 

2.  The grid-box averaged fields normally used by the large scale model are used as inputs 

to the NN. An input vector X is defined containing these fields, and the aggregated results 

of internal components of the SP that are used to update the large scale model are 

identified as the output vector Y. A limited training dataset was drawn selectively from 

four days of MMF global simulations, spanning diurnal and latitudinal variability. It is 

our initial hypothesis that a single NN-SP can be constructed for all global conditions.   

3. Experiments with different NN architectures were performed and assessed to optimize its 

ability to reproduce the SP module output fields, minimizing cost, and maximizing 

accuracy.  These experiments include comparisons of a single emulating NN with many 

outputs vs. a battery of simpler emulating NNs with different outputs.  Also, experiments 

with different output normalizations and different emulating NN complexities were 

conducted.  

4. An ensemble of NN’s were developed using a training dataset to identify the NN ability 

to reproduce the SP output and  to characterize uncertainty associated with the stochastic 

aspect of the NN parameterization.  
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5. The ensemble of emulating NN’s were evaluated using an independent (testing) dataset.  

Performance (accuracy and speedup) of the NN-SP was explored. Multiple statistics were 

used to evaluate  NN-SP and the differences between SP and NN-SP. 

The major results obtained in this work, which is a proof of a concept, allow us to expect that: 

1. The SP can be emulated by NN with a satisfactory accuracy (based on validation on an 

independent data set); 

2. The NN-SP provides an impressive, two orders of magnitude, speedup as compared with 

the original SP. 

Based on promising initial results obtained in this work and discussed in Section. 6.5, our short-

term plans include: 

1. Perform parallel runs of an MMF with the original SP and an NN-MMF with the NN-SP 

developed in this study, and evaluate the accuracy and the performance of NN-SP 

through assessing the differences between the MMF and the NN-MMF simulations and 

computation times.  

2. Extend the PNNL MMF runs to one or more years to create an extended and more 

representative data set that includes also seasonal and annual variability for training the 

NN-SP.  If the estimated speedup will hold in the NN-MMF run, long global climate 

simulations with the NN-MMF will not be more time consuming than those using CAM-

5. 

3. If extending the training set will not be sufficient for reducing the differences between the 

MMF and the NN-MMF simulations to desired small values, an extended NN 

architecture, which could alleviate the memory/history problem of the approach, will be 

introduced. 
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An extended NN architecture can be introduced in the following way.  Let us modify our NN-SP 

(6), modifying and expanding input vector by including in the modified input vector Z the values 

of X at one or several previous time steps, 

Yt = Net(Zt),                                (18) 

 where t is the current MMF time step and Zt = {Xt, Xt-1, …, Xt-n, Yt-1, …, Yt-n}includes SP input 

and output vectors X and Y at several (n) previous time steps.  Here we make a reasonable 

assumption that the unknown (for CAM) imbedded CRM initial conditions ξt at the current time 

step t are a function of SP inputs and outputs at n previous time steps, 

ξt = g(Xt-1, …, Xt-n, Yt-1, …, Yt-n), 

which leads to (18). 

The equation (18) leads to a more complicated NN emulator (recurrent NN), which will include 

additional inputs.  As a result, the history of the CRM calculations will be taken directly into 

account when developing the NN emulation. The optimal length of the history needed for NN 

training (the number of previous time steps, n, to be included), presumably from several hours to 

1-2 days (consistent with a cloud life cycle represented by CRM), will be determined 

experimentally.    

 

The significant speedup provided by NN-MMF, which, in accordance with our estimates, is 250 

times faster than the current PNNL-MMF and at least as fast as the current CAM-5, will be used 

for producing decadal and longer climate runs following, for example, the AMIP protocols. The 

goal is to determine how well the MMF performs as a climate model compared to observations 
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and to results from other climate models (e.g. CAM). The current MMF is too computationally 

intensive to allow even for a single extended run, let alone ensemble runs.  

Changes to the current CRM configuration within the MMF are limited largely by a 

computational overhead.  In its 2D configuration at 4 km resolution, the model does a good job 

of capturing deep convection, hence its improvements are reported in simulations of the tropical 

Pacific climatology (Ovtchinnikov et al., 2005). However, the 4 km resolution is insufficient to 

resolve boundary layer clouds adequately (Ackerman et al., 2005; available at 

science.arm.gov/~ackerman). The ability of the CRM to simulate upper tropospheric cirrus is 

mixed, with some success in the case of more organized systems, but less so in the case of 

detached cirrus. The fundamental goal of this and the following works is to develop a fast NN-

MMF in order to increase computational throughput. It will allow for improvements in MMF, for 

example, increasing the horizontal and vertical resolution of imbedded 2-D CRM, improvements 

of its physics, and eventually substituting the 2-D CRM with the full 3D-CRM.  Improvements 

in the MMF itself through improved CRM physics and coupling will ultimately be incorporated 

in the NN-SP emulator through re-application of the methodology developed here to the new 

MMF with 3D-CRM to produce the new NN-MMF, which is computationally feasible.   

  



67 

 

References 

 Attali J-G. and G. Pagès (1997) Approximations of Functions by a Multilayer Perceptron: 

A New Approach,  Neural Networks, 6, pp. 1069-1081.  

 Chen, T. and H. Chen (1995) Approximation Capability to Functions of Several 

Variables, Nonlinear Functionals and Operators by Radial Basis Function Neural Networks, 

Neural Networks, 6, pp. 904-910. 

 Cherkassky V. and F. Mulier (1998), Learning from Data: Concepts, Theory, and 

Methods, Wiley  

            Grabowski, W. W., 2001: Coupling cloud processes with the large-scale dynamics using 

the Cloud-Resolving Convection Parameterization (CRCP). J. Atmos. Sci., v. 58, 978-997. 

            Grabowski, W. W., 2002: Large-scale organization of moist convection in idealized 

aquaplanet simulations. Int. J. Numer. Methods in Fluids, 39, 843--853. 

            Grabowski, W. W., 2003a: MJO-like coherent structures:  Sensitivity simulations using 

the Cloud-Resolving Convection Parameterization (CRCP).  J. Atmos.  Sci., J. Atmos. Sci., v. 

60, 847-864.             

Grabowski, W. W., 2003b: Impact of cloud microphysics on convective-radiative quasi-

equilibrium revealed by Cloud-Resolving Convection Parameterization (CRCP). J. Climate, v. 

16, 3463-3475. 

            Grabowski, W. W., 2004: An improved framework for superparameterization. J.  Atmos. 

Sci., in press. 

            Grabowski, W. W., and P. K. Smolarkiewicz, 1999: CRCP: A Cloud Resolving 

Convection Parameterization for Modeling the Tropical Convecting Atmosphere. Physica D, 

133, 171-178. 



68 

 

 Khairoutdinov, M. F., and D. A. Randall, 2001: A cloud resolving model as a cloud 

parameterization in the NCAR Community Climate System Model: Preliminary results. 

Geophys. Res. Let., 28, 3617-3620. 

Khairoutdinov, M. F., and D. A. Randall, 2003: Cloud resolving modeling of the ARM 

summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities. J. Atmos. Sci., 60, 

607–625. 

 Krasnopolsky V., D.V. Chalikov, and H.L. Tolman (2002) A neural network technique to 

improve computational efficiency of numerical oceanic models, Ocean Modelling, v. 4, 363-383   

Krasnopolsky, V. M., 2007: Neural Network Emulations for Complex Multidimensional  

Geophysical Mappings: Applications of Neural Network Techniques to Atmospheric and 

Oceanic Satellite Retrievals and Numerical Modeling, Reviews of Geophysics, 45, RG3009, 

doi:10.1029/2006RG000200. 

 Krasnopolsky, V. M., M.S. Fox-Rabinovitz, and A. A. Belochitski, 2008: "Decadal 

Climate Simulations Using Accurate and Fast Neural Network Emulation of Full, Long- and 

Short Wave, Radiation.",Monthly Weather Review,  136, 3683–3695,  doi: 

10.1175/2008MWR2385.1. 

 Krasnopolsky, V. M., M. S. Fox-Rabinovitz, Y. T. Hou, S. J. Lord, and A. A. 

Belochitski, 2010: "Accurate and Fast Neural Network Emulations of Model Radiation for the 

NCEP Coupled Climate Forecast System: Climate Simulations and Seasonal Predictions", 

Monthly Weather Review,  v.138, pp. 1822-1842, DOI: 10.1175/2009MWR3149.1 

 Krasnopolsky, V. M., M. S. Fox-Rabinovitz, A. A. Belochitski, Philip J.Rasch, P. 

Blossey, and Y. Kogan, 2011: “Development of neural network convection parameterizations for 



69 

 

climate and NWP models using Cloud Resolving Model simulations”, NCEP Office Note 469, 

http://www.emc.ncep.noaa.gov/officenotes/newernotes/on469.pdf 

V. M. Krasnopolsky and Y. Lin, 2012: "A Neural Network Nonlinear Multimodel 

Ensemble to Improve Precipitation Forecasts over Continental US", Advances in 

Meteorology,Volume 2012, Article ID 649450, 11 pages, doi:10.1155/2012/649450 

Krasnopolsky, V., 2013: The Application of Neural Networks in the Earth System 

Sciences: Neural Network Emulations for Complex Multidimensional Mappings, Atmospheric 

and Oceanographic Sciences Library, Volume 46, Springer Netherlands; doi:10.1007/978-94-

007-6073-8, http://link.springer.com/book/10.1007/978-94-007-6073-8/page/1 

 Nguyen D, Widrow B (1990) Improving the learning speed of 2-layer neural networks by 

choosing initial values of the adaptive weights. Proc of International Joint Conference of Neural 

Networks, June 17-21, San Diego, CA, USA, 3: 21-26 

Ovtchinnikov, M., T. P. Ackerman, R. T. Marchand, and M. Khairoutdinov, 2005: 

Evaluation of the multi-scale modeling framework using data from the Atmospheric Radiation 

Measurement program.  J. Climate, 19, 1716–1729, doi: http://dx.doi.org/10.1175/JCLI3699.1 

 Pincus, R., H. W. Barker, and J.-J. Morcrette, 2003: A fast, flexible, approximate 

technique for computing radiative transfer in inhomogeneous cloud fields. J. Geophys. Res., Vol. 

108, No. D13, 4376,  doi:10.1209/2002JD003322 

            Randall, D., M. Khairoutdinov, A. Arakawa, and W. Grabowski, 2003: Breaking the 

cloud-parameterization deadlock Bull. Amer. Meteor. Soc., v. 84, 1547-1564.  

 Ripley, B.D.(1996), Pattern Recognition and Neural Networks, Cambridge Univ. Press. 

 Taylor, K. E. 2001: Summarizing multiple aspects of model performance in a single 

diagram, JGR: Atmosphers, v. 106, 7183-7192 

http://www.emc.ncep.noaa.gov/officenotes/newernotes/on469.pdf
http://www.hindawi.com/journals/amet/2012/649450/
http://www.hindawi.com/journals/amet/2012/649450/
http://link.springer.com/book/10.1007/978-94-007-6073-8/page/1
http://dx.doi.org/10.1175/JCLI3699.1
http://www.cdc.noaa.gov/people/robert.pincus/Papers/McICA/
http://www.cdc.noaa.gov/people/robert.pincus/Papers/McICA/


70 

 

Wang, M., S. Ghan, R. Easter, M. Ovchinnikov, X. Liu, E. Kassianov, Y. Qian, W. I. 

Gustafson, V. E. Larson, D. P. Schanen, M. Khairoutdinov, and H. Morrison, 2011: The multi-

scale aerosol-climate model PNNL-MMF: model description and evaluation, Geosci Model Dev, 

4(1), 137-168. 

 


